XDAQ Supervisors

Souvik Das (Cornell University)

01/11/07

PixelSupervisor

• Initialising

-Detects sub-supervisors like PixelFECSupervisors, PixelFEDSupervisors, PixelTTCSupervisors and PixelLTCSupervisors that have been loaded into the XDAQ framework.

- Configuring
 - Receives a Global Key from the PixelSupervisorGUI (will be Run Control).
 - Loads appropriate configuration files into local objects.
 - Instructs PixelFEC/FED/TTCSupervisors to advance to their Configuration states and load their configuration objects from files.
- Running
 - Instructs PixelFEC/FED/TTCSupervisors to advance to their Running states.
 - Finds what type of Run (Physics/Calibration) it is. If it is a Calibration Run, finds what type of calibration it is.
 - If it is a Baseline Calibration with Test-DACs, it simply sends a SOAP message to the PixelFEDSupervisor to carry it out.
 - If it is an Address Level Calibration with Test-DACs, it simply sends a SOAP message to the PixelFEDSupervisor to carry it out.
 - If it is a Baseline Calibration with Pixel Data,
 - · Instructs concerned PixelFECSupervisors to ClrCal all pixels.
 - Instructs PixelTTCSupervisor to issue a trigger.
 - Instructs PixelFEDSupervisor to collect Black levels and compute their mean and moments.
 - Instructs PixelFEDSupervisor to adjust the FED Optical Receiver Input and Channel Offset DACs settings to bring the Black to a central value. Repeat previous two steps till satisfactory.

PixelSupervisor continued...

- If it is an Address Level Calibration
 - Instructs the PixelFECSupervisors to ClrCal all concerned ROCs.
 - Instructs the PixelFECSupervisors to fire ROCs as specified in their configuration objects.
 - Instructs the TTCSupervisor to issue multiple CalSync triggers
 - Instructs the PixelFEDSupervisor to catch address level information on FIFO 1 transparent mode and come up with recommended ROC and TBM address levels.
- If it is a Pixel Alive / Gain Calibration / S-Curve Calibration:
 - Instructs the PixelFECSupervisors to ClrCal all concerned ROCs
 - Instructs the PixelFECSupervisors to fire pixels according to their configuration objects
 - Instructs the PixelTTCSupervisor to issue triggers as in the configuration object
 - Instructs the PixelFEDSupervisor to read data out from SpyFIFO 3 into a file.
- If it is a Clock Phase Calibration
 - Instructs PixelFECSupervisors to ClrCal all concerned ROCs
 - Loops over all 32 delay+phase*2 settings and instructs PixelFEDSupervisors to set them.
 - Instructs PixelTTCSupervisor to issue CalSync triggers
 - Instructs PixelFEDSupervisor to write transparent mode data from FIFO 1 into a file
 - These files are inspected by hand!
- Halting
 - Instructs PixelFEC/FED/TTCSupervisors to enter their Halted states.
- Pausing
 - Instructs PixelFEC/FED/TTCSupervisors to enter their Paused states.
- Resuming
 - Instructs PixelFEC/FED/TTCSupervisors to enter their Running states.

PixelFEDSupervisor

• Configuring

- Initialises PixelFEDInterface objects, one for every FED in the crate.
- Receives a Global Key from the PixelSupervisor.
- Loads appropriate configuration files into local objects.
- Starts up the RU Builder
- Running
 - Allows all low level commands to carried out.
- Paused
 - Disallows all low level commands to carried out
- Halted
 - Disallows all low level commands to carried out
 - Destroys all local objects
- Read FIFO
 - Reads FED Spy FIFOs 1, 2 or 3 in Normal or Transparent mode as specified and ships them to the screen, a file or the RU Builder.
- Reset FED: Resets the specified FED and reloads its firmware
- Reload Firmware of the specified FED
- Fill Test DAC with a given pulse train
- Issue VME Trigger
- Set Control and Mode Registers
- Set Phases and Delays
- Perform a Baseline Calibration with Test DACs
- Perform an Address Level Calibration with Test DACs
- Collect data and set FED settings for Baseline Calibration with Pixel Data
- Collect data and recommend Address Levels with Pixel Data
- Has its own GUI that allows the user to issue some low level instructions if in the correct state.

http://ppdnwpixelsoft.fnal.gov:1973/urn:xdaq-application:lid=70/

PixelFECSupervisor

• Configuring

- Initialises PixelFECInterface objects, one for every FEC in the crate.
- Receives a Global Key from the PixelSupervisor.
- Loads appropriate configuration files into local objects.
- Running
 - Allows all low level commands to carried out.
- Paused
 - Disallows all low level commands to carried out
- Halted
 - Disallows all low level commands to carried out
 - Destroys all local objects
- **TBM Command:** Allows us to program a TBM
- **Prog DAC:** Allows us to program the various DACs on a specified ROC
- Prog Pix: Allows us to program pixels on a specified ROC
- Cal Pix: Allows us to send calibration signals to pixels on a specified ROC
- Clr Cal: Clears all calibration signals on a given ROC
- Calib Running: Loops through all pixel patterns in PixelFECSupervisor's calibration object and fires them up.
- Has its own GUI that allows the user to issue some low level instructions if in the correct state.

http://ppdnwpixelsoft.fnal.gov:1973/urn:xdaq-application:lid=60/

Pixel Front End Controller Supervisor Version: 3.0 Date: Thu, 11 Jan 2007 14:07:41 GMT

PixelFECSupervisor

Halted

Finite State Machine

Current State Halted	FEC Base Address: Global Key:			
Configure	Halt	Pause	Resume	Start

Low Level Commands

TBM Command mFEC: 1 • mFEC Channel: A • TBM Channel: A • Hub Address: 0 • Port Address: 0 • Offset: 0 • Data Byte: Direction: Up • TBMCommand				
Program DAC mFEC: 1 • mFEC Channel: A • Hub Address: 0 • Port Address: 0 • ROC Id: 0 • DAC Address: Vdd • DAC Value: Prog_DAC	Program Pixel mFEC: 1 • mFEC Channel: A • Hub Address: 0 • Port Address: 0 • ROC Id: 0 • Pixel Column: 0 • Pixel Row: 0 • Pixel: Enable • Trim (0-15): 0 • Prog_Pix			
Calibrate Pixel mFEC: 1 • mFEC Channel: A • Hub Address: 0 • Port Address: 0 • ROC Id: 0 • Pixel Column: 0 • Pixel Row: 0 • Calibrate with: Sensor Bumps • Cal_Pix	Clear Calibration mFEC: 1 • mFEC Channel: A • Hub Address: 0 • Port Address: 0 • ROC Id: 0 • ClrCal			